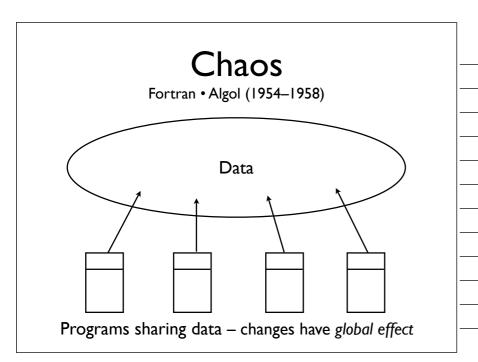
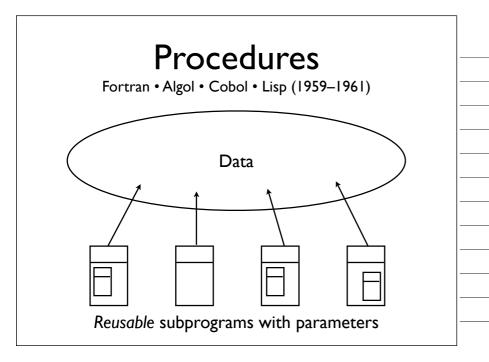
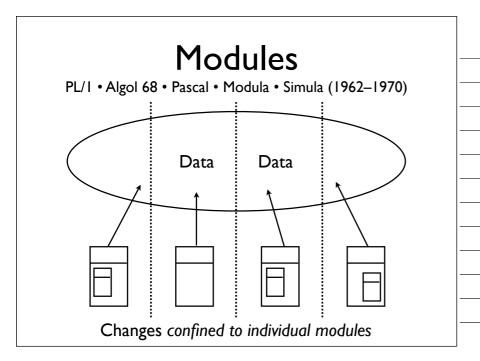


These slides are based on Grady
Booch: Object-Oriented Analysis and
Design (1998), updated from various
SOURCES

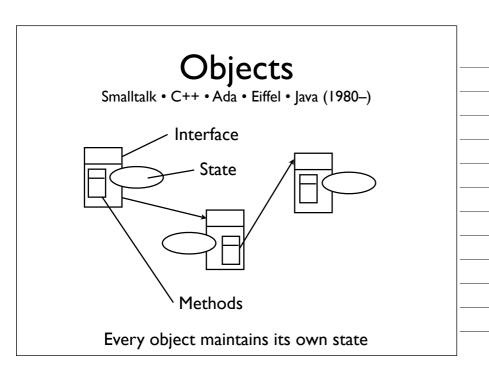
The Challenge


- Software may live much longer than expected
- Software must be continuously adapted to a changing environment
- Maintenance takes 50–80% of the cost
- Goal: Make software maintainable and reusable – at little or no cost


Imperative Programming


from 1950 until today

Programming Styles


- Chaotic
- Procedural
- Modular
- Object oriented

Overview

Generation	Control	Data
chaotic	anything	anything
procedural	procedure	anything
modular	procedure	module
object oriented	method	object

plus: logic-based, rule-based, constraint-based, functional programming...

Principles

of object-oriented design

- Abstraction
- Encapsulation
- Modularity
- Hierarchy

Goal: Maintainability and Reusability

Principles

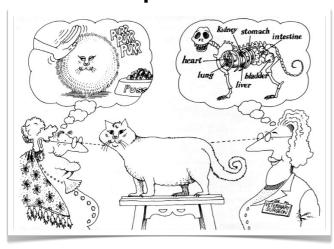
of object-oriented design

- Abstraction
- Encapsulation
- Modularity
- Hierarchy

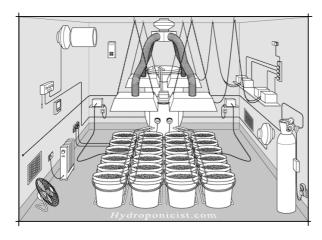
Abstraction

Concrete Object

General Principle


Abstraction...

- Highlights common properties of objects
- Distinguishes important and unimportant properties
- Must be understood even without a concrete object


Abstraction

"An abstraction denotes the essential characteristics of an object that distinguish it from all other kinds of objects and thus provide crisply defined conceptual boundaries, relative to the perspective of the viewer"

Perspectives

Example: Sensors

An Engineer's Solution

```
void check_temperature() {
    // see specs AEG sensor type 700, pp. 53
    short *sensor = 0x80004000;
    short *low = sensor[0x20];
    short *high = sensor[0x21];
    int temp_celsius = low + high * 256;
    if (temp_celsius > 50) {
        turn_heating_off()
    }
}
```

Abstract Solution

```
typedef float Temperature;
typedef int Location;

class TemperatureSensor {
public:
    TemperatureSensor(Location);
    ~TemperatureSensor();

    void calibrate(Temperature actual);
    Temperature currentTemperature() const;
    Location location() const;

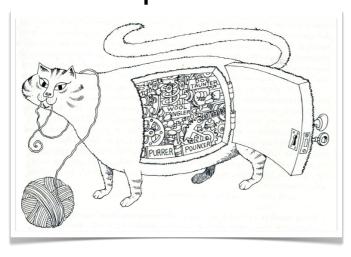
private: ...
}
```

More Abstraction

Ceci n'est pas une pipe.

Principles

of object-oriented design


- Abstraction hide details
- Encapsulation
- Modularity
- Hierarchy

Principles of object-oriented design Abstraction – Hide details Encapsulation Modularity Hierarchy Encapsulation No part of a complex system should depend on internal details of another Goal: keep software changes local • Information hiding: Internal details (state, structure, behavior) become the object's secret

Encapsulation

"Encapsulation is the process of compartmentalizing the elements of an abstraction that constitute its structure and its behavior; encapsulation serves to separate the contractual interface of an abstraction and its implementation."

Encapsulation

An active Sensor

```
class ActiveSensor {
public:
    ActiveSensor(Location)
    ~ActiveSensor();
    void calibrate(Temperature actual);
    Temperature currentTemperature() const;
    Location location() const;
    void register(void (*callback)(ActiveSensor *));

private: ...
}
Callback management is the sensor's secret
```

Anticipating Change

Features that are anticipated to change should be isolated in specific components

- Number literals
- String literals
- Presentation and interaction

Number literals

```
int a[100]; for (int i = 0; i <= 99; i++) a[i] = 0;

const int SIZE = 100;
int a[SIZE]; for (int i = 0; i < SIZE; i++) a[i] = 0;

const int ONE_HUNDRED = 100;
int a[ONE_HUNDRED];</pre>
```

If one searches for "100", one will miss the "99" :-(

Number literals

double sales_price = net_price * 1.19;

final double VAT = 1.19;
double sales_price = net_price * VAT;

String literals

if (sensor.temperature() > 100)
 printf("Water is boiling!");

if (sensor.temperature() > BOILING_POINT)
 alarm.handle_boiling();

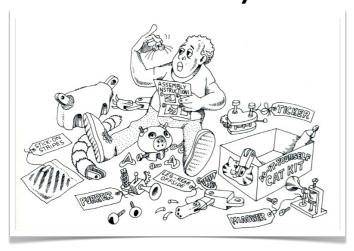
Principles of object-oriented design • Abstraction – Hide details • Encapsulation – Keep changes local

Principles

of object-oriented design

- Abstraction Hide details
- Encapsulation Keep changes local
- Modularity

Modularity


Hierarchy

Hierarchy

Modularity

- Basic idea: Partition a system such that parts can be designed and revised independently ("divide and conquer")
- System is partitioned into modules that each fulfil a specific task
- Modules should be changeable and reuseable independent of other modules

Modularity

Modularity

"Modularity is the property of a system that has been decomposed into a set of cohesive and loosely coupled modules."

Module Balance

- Goal I: Modules should hide information and expose as little as possible
- Goal 2: Modules should cooperate –
 and therefore must exchange information
- These goals are in conflict with each other

Principles of Modularity • High cohesion – Modules should contain functions that logically belong together Weak coupling – Changes to modules should not affect other modules • Law of Demeter – talk only to friends High cohesion Modules should contain functions that logically belong together • Achieved by grouping functions that work on the same data • "natural" grouping in object oriented design Weak coupling Changes in modules should not impact other modules Achieved via

Information hiding

• Depending on as few modules as possible

Law of Demeter

or Principle of Least Knowledge

- Basic idea: Assume as little as possible about other modules
- Approach: Restrict method calls to friends

Agriculture; grow software in small steps; signify a bottom-up philosophy of programming
- Programming

Demeter = Greek Goddess of

Call your Friends

A method M of an object O should only call methods of

- I. O itself
- 2. M's parameters
- 3. any objects created in M
- 4. O's direct component objects

"single dot rule"

http://en.wikipedia.org/wiki/ Law_of_Demeter

Demeter: Example

<pre>class Uni { Prof boring = new Prof(); public Prof getProf() { return boring; } public Prof getNewProf() { return new Prof(); }</pre>
}
<pre>class Test { Uni uds = new Uni(); public void one() { uds.getProf().fired(); } public void two() { uds.getNewProf().hired(); } }</pre>

Demeter: Example

```
class Uni {
    Prof boring = new Prof();
    public Prof getProf() { return boring; }
    public Prof getNewProf() { return new Prof(); }
    public void fireProf(...) { ... }
}

class BetterTest {
    Uni uds = new Uni();
    public void betterOne() { uds.fireProf(...); }
}
```

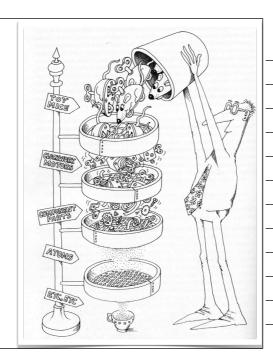
Demeter effects

- Reduces coupling between modules
- Disallow direct access to parts
- Limit the number of accessible classes
- Reduce dependencies
- Results in several new wrapper methods ("Demeter transmogrifiers")

Principles

of object-oriented design

- Abstraction Hide details
- Encapsulation Keep changes local
- Modularity Control information flow High cohesion • weak coupling • talk only to friends
- Hierarchy


Principles

of object-oriented design

- Abstraction Hide details
- Encapsulation Keep changes local
- Modularity Control information flow High cohesion • weak coupling • talk only to friends
- Hierarchy

Hierarchy

"Hierarchy is a ranking or ordering of abstractions."

Central Hierarchies

- "has-a" hierarchy Aggregation of abstractions
 - A car has three to four wheels
- "is-a" hierarchy Generalization across abstractions
 - An ActiveSensor is a TemperatureSensor

Central Hierarchies

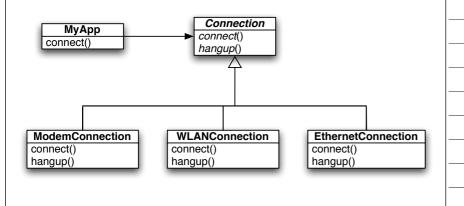
- "has-a" hierarchy –
 Aggregation of abstractions
 - A car has three to four wheels
- "is-a" hierarchy –
 Generalization across abstractions
 - An ActiveSensor is a TemperatureSensor

Hierarchy principles

- Open/Close principle Classes should be open for extensions
- Liskov principle Subclasses should not require more, and not deliver less
- Dependency principle Classes should only depend on abstractions

Hierarchy principles

- Open/Close principle Classes should be open for extensions
- Liskov principle Subclasses should not require more, and not deliver less
- Dependency principle Classes should only depend on abstractions

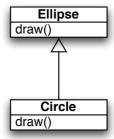

Open/Close principle

- A class should be open for extension, but closed for changes
- Achieved via inheritance and dynamic binding

An Internet Connection

```
void connect() {
    if (connection_type == MODEM_56K)
    {
        Modem modem = new Modem();
        modem.connect();
    }
    else if (connection_type == ETHERNET) ...
    else if (connection_type == WLAN) ...
    else if (connection_type == UMTS) ...
}
```

Solution with Hierarchies


Hierarchy principles

- Open/Close principle Classes should be open for extensions
- Liskov principle Subclasses should not require more, and not deliver less
- Dependency principle Classes should only depend on abstractions

Liskov Substitution Principle

- An object of a superclass should always be substitutable by an object of a subclass:
 - Same or weaker preconditions
 - Same or stronger postconditions
- Derived methods should not assume more or deliver less

- Every circle is an ellipse
- Does this hierarchy make sense?
- No, as a circle requires more and delivers less

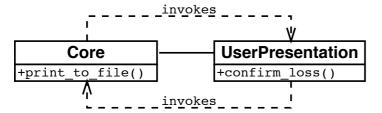
http://e	n.wikipedia.c	rg/wiki/
Liskov	substitution	principle

•				
JIC	e	VS	Ы	lipse

Hierarchy principles

- Open/Close principle Classes should be open for extensions
- Liskov principle Subclasses should not require more, and not deliver less
- Dependency principle Classes should only depend on abstractions

Dependency principle

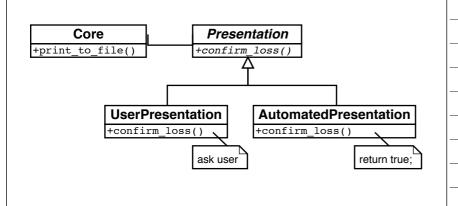

- A class should only depend on abstractions
 never on concrete subclasses
 (dependency inversion principle)
- This principle can be used to break dependencies

Dependency

```
// Print current Web page to FILENAME.
void print_to_file(string filename)
{
    if (path_exists(filename))
    {
        // FILENAME exists;
        // ask user to confirm overwrite
        bool confirmed = confirm_loss(filename);
        if (!confirmed)
            return;
    }

    // Proceed printing to FILENAME
    ...
}
```

Cyclic Dependency


Constructing, testing, reusing individual modules becomes impossible!

Dependency

```
// Print current Web page to FILENAME.
void print_to_file(string filename, Presentation *p)
{
    if (path_exists(filename))
    {
        // FILENAME exists;
        // ask user to confirm overwrite
        bool confirmed = p->confirm_loss(filename);
        if (!confirmed)
            return;
    }

    // Proceed printing to FILENAME
    ...
}
```

Depending on Abstraction

Choosing Abstraction

- Which is the "dominant" abstraction?
- How does this choice impact the remaining system?

A. LOHOHOHO
B. 1001-10-10-10-10-10-10-10-10-10-10-10-10
c. 💎 🚓
E. O
F
G
H.
J

More on this topic:	aspect-oriented
programming	

Hierarchy principles

- Open/Close principle Classes should be open for extensions
- Liskov principle Subclasses should not require more, and not deliver less
- Dependency principle Classes should only depend on abstractions

Principles

of object-oriented design

- Abstraction Hide details
- Encapsulation Keep changes local
- Modularity Control information flow High cohesion • weak coupling • talk only to friends
- Hierarchy Order abstractions
 Classes open for extensions, closed for changes Subclasses that do not require more or deliver less depend only on abstractions

Principles

of object-oriented design

- Abstraction Hide details
- Encapsulation Keep changes local
- Modularity Control information flow High cohesion • weak coupling • talk only to friends
- Hierarchy Order abstractions
 Classes open for extensions, closed for changes Subclasses that do not require more or deliver less depend only on abstractions

Goal: Maintainability and Reusability